Dark Gray = Pending ICOC Vote, GWG Recommended Light Gray = Pending ICOC Vote, Not GWG Recommended ## **CURRENT CIRM TRANSLATION PORTFOLIO** | PI, Institution | | GOAL* | DISEASE/INJURY | APPROACH | |--|---|--|--|--| | | | CANCE | R: HEMATOLOGIC MALIGNAN | NCY | | DR1-01430 | | | | A monoclonal antibody (anti-ROR1) and a small | | Carson, UCSD | Disease Team I | IND | AML, CLL | molecule (JAK2 inhibitor) targeting CLL and AML cancer | | DR1-01485 | | | | stem cells,respectively Monoclonal antibody against CD47 – "Don't eat me" | | Weissman, Stanford | Disease Team I | IND | AML | antigen that is expressed on leukemia stem cells | | TR2-01789 | Foul Translation II | DC | CMI | Small molecule pan BCL-2 inhibitor targeting cancer | | Jamieson, UCSD | Early Translation II | DC | CML | stem cells | | TR2-01816
Müschen, CHLA | Early Translation II | DC | AML, ALL | Small molecule inhibitor of BCL6 targeting cancer stem cells | | Pidschen, CHLA | | | CANCER: SOLID TUMOR | cens | | DR2A-05309 | Disease Team Therapy | IND, Ph | | Autologous HSC genetically modified to produce an anti- | | Ribas, UCLA | Development | 1 | Melanoma | tumor T cell receptor and a PET reporter gene | | DR1-01477 | | | Colon, ovarian cancers, | Small molecules specific for each of two drug targets in | | Slamon, UCLA | Disease Team I | IND | glioblastoma | cancer stem cells | | DR1-01421 | | | | Allogeneic hNSC line to target tumor, engineered ex vivo | | Aboody, City of Hope | Disease Team I | IND | Glioblastoma | to deliver carboxylesterase to locally convert CPT-11 to | | | | | | more potent SN-38 | | TR2-01791 | | | | Allogeneic hMSC to target tumor, engineered to produce replication competent retrovirus encoding a prodrug | | Kasahara, UCLA | Early Translation II | DC | Glioblastoma | activator to locally convert a pro-drug to a potent | | Augunuru, OCLA | | | | chemotherapeutic | | | | | | A mixture of autologous central memory T cells | | TR3-05641 | 5 I T I I T T T T T T T T T T T T T T T | 5.0 | | engineered to each express a chimeric antigen receptor | | Forman, Beckman Inst. | Early Translation III | DC | Glioblastoma | (CAR) targeting one of three proteins on glioma- | | | | | | initiating cancer stem cells | | | | NEUF | ROLOGIC DISORDERS: INJUR | Y | | DR1-01480 | | | | | | Steinberg, Stanford | Disease Team I | IND | Stroke | Allogeneic hESC-derived NSC | | TR3-05628 | Early Translation III | DC | Spinal Cord Injury | hESC-derived neural stem cells in a scaffold | | Tuszynski, UCSD
TR3-05606 | | | | | | Kriegstein, UCSF | Early Translation III | DCF | Spinal Cord Injury | hESC-derived progenitors of inhibitory interneurons | | TR2-01767 | | | | All | | Cummings, UC irvine | Early Translation II | DCF | Traumatic Brain Injury | Allogeneic hESC-derived NSC | | TR2-01785
Havton, UC Irvine | Early Translation II | DCF | Spinal Cord Injury (conus medullaris, cauda equina) | hESC-derived motor and autonomic precursor neurons | | Havion, OC II vine | | | | | | | NEUROLO | ogic bis | | TVF DISEASES | | DD24 0E220 | | | ORDERS: NEURODEGENERAT | | | DR2A-05320
Svendson, Cedars-Sinai | Disease Team Therapy | IND, Ph | | Allogeneic neural progenitor cells genetically modified | | Svendson, Cedars-Sinai | Disease Team Therapy
Development | IND, Ph
1 | ORDERS: NEURODEGENERAT | Allogeneic neural progenitor cells genetically modified with GDNF | | Svendson, Cedars-Sinai
DR2A-05416 | Disease Team Therapy
Development
Disease Team Therapy | | ORDERS: NEURODEGENERAT ALS Alzheimer's Disease | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection | | Svendson, Cedars-Sinai | Disease Team Therapy
Development | IND, Ph
1 | ALS Alzheimer's Disease | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc. | Disease Team Therapy
Development
Disease Team Therapy
Development | IND, Ph
1
IND | ORDERS: NEURODEGENERAT ALS Alzheimer's Disease | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc.
DR2A-05415
Wheelock, UC Davis
TRX-01471 | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy | IND, Ph
1
IND | ALS Alzheimer's Disease | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc.
DR2A-05415
Wheelock, UC Davis
TRX-01471
Goldstein, UCSD | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation | IND, Ph
1
IND
IND, Ph
1
DC | ALS Alzheimer's Disease Huntington's Disease ALS | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc.
DR2A-05415
Wheelock, UC Davis
TRX-01471
Goldstein, UCSD
TR2-01841 | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation | IND, Ph
1
IND
IND, Ph
1 | ALS Alzheimer's Disease Huntington's Disease | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc.
DR2A-05415
Wheelock, UC Davis
TRX-01471
Goldstein, UCSD
TR2-01841
Thompson, UC Irvine | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation | IND, Ph
1
IND
IND, Ph
1
DC | ALS Alzheimer's Disease Huntington's Disease ALS | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc.
DR2A-05415
Wheelock, UC Davis
TRX-01471
Goldstein, UCSD
TR2-01841 | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation | IND, Ph
1
IND
IND, Ph
1
DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc.
DR2A-05415
Wheelock, UC Davis
TRX-01471
Goldstein, UCSD
TR2-01841
Thompson, UC Irvine
TR1-01267 | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II | IND, Ph 1 IND IND, Ph 1 DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc.
DR2A-05415
Wheelock, UC Davis
TRX-01471
Goldstein, UCSD
TR2-01841
Thompson, UC Irvine
TR1-01267
Snyder, Sanford- | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation I | IND, Ph 1 IND IND, Ph 1 DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc.
DR2A-05415
Wheelock, UC Davis
TRX-01471
Goldstein, UCSD
TR2-01841
Thompson, UC Irvine
TR1-01267
Snyder, Sanford-
Burnham
TR2-01856
Zeng, Buck Inst. | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II | IND, Ph 1 IND IND, Ph 1 DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc.
DR2A-05415
Wheelock, UC Davis
TRX-01471
Goldstein, UCSD
TR2-01841
Thompson, UC Irvine
TR1-01267
Snyder, Sanford-
Burnham
TR2-01856
Zeng, Buck Inst. | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation I | IND, Ph 1 IND IND, Ph 1 DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc.
DR2A-05415
Wheelock, UC Davis
TRX-01471
Goldstein, UCSD
TR2-01841
Thompson, UC Irvine
TR1-01267
Snyder, Sanford-
Burnham
TR2-01856
Zeng, Buck Inst. | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation I | IND, Ph 1 IND IND, Ph 1 DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells | | Svendson, Cedars-Sinai
DR2A-05416
Capela, Stem Cells Inc.
DR2A-05415
Wheelock, UC Davis
TRX-01471
Goldstein, UCSD
TR2-01841
Thompson, UC Irvine
TR1-01267
Snyder, Sanford-
Burnham
TR2-01856
Zeng, Buck Inst. | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation II Early Translation II | IND, Ph 1 IND IND, Ph 1 DC DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells Small molecule that acts on oligodendrocyte precursors | | Svendson, Cedars-Sinai DR2A-05416 Capela, Stem Cells Inc. DR2A-05415 Wheelock, UC Davis TRX-01471 Goldstein, UCSD TR2-01841 Thompson, UC Irvine TR1-01267 Snyder, Sanford- Burnham TR2-01856 Zeng, Buck Inst. TR3-05603 Lane, UC Irvine | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation I | IND, Ph 1 IND IND, Ph 1 DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells Small molecule that acts on oligodendrocyte precursors in the CNS to induce differentiation to oligodendrocytes | | Svendson, Cedars-Sinai DR2A-05416 Capela, Stem Cells Inc. DR2A-05415 Wheelock, UC Davis TRX-01471 Goldstein, UCSD TR2-01841 Thompson, UC Irvine TR1-01267 Snyder, Sanford- Burnham TR2-01856 Zeng, Buck Inst. TR3-05603 Lane, UC Irvine TR3-05617 Schultz, Scripps | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation II Early Translation II | IND, Ph 1 IND IND, Ph 1 DC DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple Sclerosis Autoimmune Disease / Multiple | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells Small molecule that acts on oligodendrocyte precursors in the CNS to induce differentiation to oligodendrocytes to stimulate remyelination | | Svendson, Cedars-Sinai DR2A-05416 Capela, Stem Cells Inc. DR2A-05415 Wheelock, UC Davis TRX-01471 Goldstein, UCSD TR2-01841 Thompson, UC Irvine TR1-01267 Snyder, Sanford-Burnham TR2-01856 Zeng, Buck Inst. TR3-05603 Lane, UC Irvine TR3-05617 Schultz, Scripps TR3-05676 | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation II Early Translation II | IND, Ph 1 IND IND, Ph 1 DC DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple Sclerosis Autoimmune Disease / Multiple | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells Small molecule that acts on oligodendrocyte precursors in the CNS to induce differentiation to oligodendrocytes | | Svendson, Cedars-Sinai DR2A-05416 Capela, Stem Cells Inc. DR2A-05415 Wheelock, UC Davis TRX-01471 Goldstein, UCSD TR2-01841 Thompson, UC Irvine TR1-01267 Snyder, Sanford- Burnham TR2-01856 Zeng, Buck Inst. TR3-05603 Lane, UC Irvine TR3-05617 Schultz, Scripps | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation II Early Translation II Early Translation III Early Translation III | IND, Ph 1 IND IND, Ph 1 DC DC DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple Sclerosis Autoimmune Disease / Multiple Sclerosis | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells Small molecule that acts on oligodendrocyte precursors in the CNS to induce differentiation to oligodendrocytes to stimulate remyelination Small molecule that corrects proposed aberrant RNA | | Svendson, Cedars-Sinai DR2A-05416 Capela, Stem Cells Inc. DR2A-05415 Wheelock, UC Davis TRX-01471 Goldstein, UCSD TR2-01841 Thompson, UC Irvine TR1-01267 Snyder, Sanford- Burnham TR2-01856 Zeng, Buck Inst. TR3-05603 Lane, UC Irvine TR3-05617 Schultz, Scripps TR3-05676 Yeo, UCSD | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation II Early Translation II Early Translation III Early Translation III | IND, Ph 1 IND IND, Ph 1 DC DC DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple Sclerosis Autoimmune Disease / Multiple Sclerosis | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells Small molecule that acts on oligodendrocyte precursors in the CNS to induce differentiation to oligodendrocytes to stimulate remyelination Small molecule that corrects proposed aberrant RNA "signature" in iPSC- derived neurons from patients with | | Svendson, Cedars-Sinai DR2A-05416 Capela, Stem Cells Inc. DR2A-05415 Wheelock, UC Davis TRX-01471 Goldstein, UCSD TR2-01841 Thompson, UC Irvine TR1-01267 Snyder, Sanford- Burnham TR2-01856 Zeng, Buck Inst. TR3-05603 Lane, UC Irvine TR3-05617 Schultz, Scripps TR3-05676 Yeo, UCSD | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation II Early Translation II Early Translation III Early Translation III | IND, Ph 1 IND IND, Ph 1 DC DC DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple Sclerosis Autoimmune Disease / Multiple Sclerosis | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells Small molecule that acts on oligodendrocyte precursors in the CNS to induce differentiation to oligodendrocytes to stimulate remyelination Small molecule that corrects proposed aberrant RNA "signature" in iPSC- derived neurons from patients with defects in RNA processing | | Svendson, Cedars-Sinai DR2A-05416 Capela, Stem Cells Inc. DR2A-05415 Wheelock, UC Davis TRX-01471 Goldstein, UCSD TR2-01841 Thompson, UC Irvine TR1-01267 Snyder, Sanford- Burnham TR2-01856 Zeng, Buck Inst. TR3-05603 Lane, UC Irvine TR3-05617 Schultz, Scripps TR3-05676 Yeo, UCSD TR3-05577 Goldstein, UCSD | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation II Early Translation III | IND, Ph 1 IND IND, Ph 1 DC DC DC DC DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple Sclerosis Autoimmune Disease / Multiple Sclerosis | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells Small molecule that acts on oligodendrocyte precursors in the CNS to induce differentiation to oligodendrocytes to stimulate remyelination Small molecule that corrects proposed aberrant RNA "signature" in iPSC- derived neurons from patients with defects in RNA processing Small molecule identified through screens on purified | | Svendson, Cedars-Sinai DR2A-05416 Capela, Stem Cells Inc. DR2A-05415 Wheelock, UC Davis TRX-01471 Goldstein, UCSD TR2-01841 Thompson, UC Irvine TR1-01267 Snyder, Sanford- Burnham TR2-01856 Zeng, Buck Inst. TR3-05603 Lane, UC Irvine TR3-05607 Schultz, Scripps TR3-05676 Yeo, UCSD TR3-05577 Goldstein, UCSD | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation II Early Translation III Early Translation IIII Early Translation IIII Early Translation IIII | IND, Ph 1 IND IND, Ph 1 DC DC DC DC DC DC DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple Sclerosis Autoimmune Disease / Multiple Sclerosis | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells Small molecule that acts on oligodendrocyte precursors in the CNS to induce differentiation to oligodendrocytes to stimulate remyelination Small molecule that corrects proposed aberrant RNA "signature" in iPSC- derived neurons from patients with defects in RNA processing Small molecule identified through screens on purified hiPSC-derived brain cells from patients that have rare and aggressive hereditary forms of Alzheimer's Disease Small molecule for neuroprotection & neurogenesis | | Svendson, Cedars-Sinai DR2A-05416 Capela, Stem Cells Inc. DR2A-05415 Wheelock, UC Davis TRX-01471 Goldstein, UCSD TR2-01841 Thompson, UC Irvine TR1-01267 Snyder, Sanford- Burnham TR2-01856 Zeng, Buck Inst. TR3-05603 Lane, UC Irvine TR3-05617 Schultz, Scripps TR3-05676 Yeo, UCSD TR3-05577 Goldstein, UCSD | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation II Early Translation III | IND, Ph 1 IND IND, Ph 1 DC DC DC DC DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple Sclerosis Autoimmune Disease / Multiple Sclerosis | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells Small molecule that acts on oligodendrocyte precursors in the CNS to induce differentiation to oligodendrocytes to stimulate remyelination Small molecule that corrects proposed aberrant RNA "signature" in iPSC- derived neurons from patients with defects in RNA processing Small molecule identified through screens on purified hiPSC-derived brain cells from patients that have rare and aggressive hereditary forms of Alzheimer's Disease Small molecule for neuroprotection & neurogenesis identified using hESC-derived neural precursors | | Svendson, Cedars-Sinai DR2A-05416 Capela, Stem Cells Inc. DR2A-05415 Wheelock, UC Davis TRX-01471 Goldstein, UCSD TR2-01841 Thompson, UC Irvine TR1-01267 Snyder, Sanford- Burnham TR2-01856 Zeng, Buck Inst. TR3-05603 Lane, UC Irvine TR3-05607 Schultz, Scripps TR3-05676 Yeo, UCSD TR3-05577 Goldstein, UCSD | Disease Team Therapy Development Disease Team Therapy Development Disease Team Therapy Development Early Translation Early Translation II Early Translation II Early Translation III Early Translation IIII Early Translation IIII Early Translation IIII | IND, Ph 1 IND IND, Ph 1 DC DC DC DC DC DC DC DC DC | ALS Alzheimer's Disease Huntington's Disease ALS Huntington's Disease Parkinson's Disease Parkinson's Disease Parkinson's Disease Autoimmune Disease / Multiple Sclerosis Autoimmune Disease / Multiple Sclerosis | Allogeneic neural progenitor cells genetically modified with GDNF Neural stem cell transplantation for neuroprotection MSC genetically engineered to express BDNF hESC derived astrocyte precursor cells Allogeneic hESC-derived neural stem or progenitor cells The best hNSC derived from either tissue, ESC, or iPSC Allogeneic hPSC-derived dopaminergic neurons Human pluripotent stem cell-derived neural progenitor cells Small molecule that acts on oligodendrocyte precursors in the CNS to induce differentiation to oligodendrocytes to stimulate remyelination Small molecule that corrects proposed aberrant RNA "signature" in iPSC- derived neurons from patients with defects in RNA processing Small molecule identified through screens on purified hiPSC-derived brain cells from patients that have rare and aggressive hereditary forms of Alzheimer's Disease Small molecule for neuroprotection & neurogenesis | | AWARD # PI, Institution | PROGRAM | GOAL* | DISEASE/INJURY | APPROACH | |--|-------------------------------------|----------------|--|--| | | | NEURO | LOGIC DISORDERS: PEDIAT | RIC | | TR2-01832
Shi, Beckman | Early Translation II | DCF | Canavan Disease | Autologous iPSC-derived neural or oligodendrocyte progenitors, genetically modifed to correct mutant aspartoacylase (ASPA) gene | | TR2-01814
Muotri, UCSD | Early Translation II | DCF | Autism Spectrum Disorder
(ASD) | Neurons from ASD (and control) iPSC for phenotype
screening, assay development and validation, drug
screening and biomarker identification | | TR2-01749
Alvarez-Buylla, UCSF | Early Translation II | DCF | Refractory epilepsy | hESC-derived progenitors of inhibitory interneurons | | TR3-05476
Schwartz, CHOC | Early Translation III | DC | Lysosomal Storage Disease | Immune matched human neural stem cells transplantation subsequent to hematopoietic stem cell transplantation | | | | | EYE DISORDERS | | | DR2A-05739
Klassen, UC Irvine | Disease Team Therapy
Development | IND, Ph
1/2 | Retinitis Pigmentosa | Allogenic retinal progenitor cells | | DR1-01444
Humayun, USC | Disease Team I | IND | Age-related macular
degeneration (dry form) | Allogeneic functionally polarized hESC-derived RPE monolayers on synthetic substrate implanted subretinally | | TR1-01219
Friedlander, Scripps | Early Translation I | DC | Age-related macular
degeneration (dry form) | Autologous iPSC-derived RPE (generated without integrating vectors) | | TR2-01768
Deng, UCLA | Early Translation II | DCF | Corneal Injury | Ex vivo expansion of corneal epithelial stem/progenitor cells, also known as limbal stem cells | | | | | HIV / AIDS | | | DR1-06893
Symonds, Calimmune | Disease Team I | Ph 1/2 | HIV/AIDS | Autologous HSC transduced ex vivo with a lentiviral vector engineered to express an shRNA against CCR5 & a fusion inhibitor. | | DR1-01490
Zaia, City of Hope | Disease Team I | IND | AIDS Lymphoma | Autologous HSC transduced ex vivo with non-integrating vector engineered to express a zinc finger nuclease targeting CCR5 | | TRX-01431
Chen, UCLA | Early Translation | DC | AIDS Lymphoma | Autologous HSC transduced ex vivo with a lentiviral vector engineered to express shRNAs against CCR5 & another target in the HIV life cycle. | | TR2-01771
DiGiusto, Beckman | Early Translation II | DC | AIDS Lymphoma | Autologous HSC genetically modified with multiple anti-
HIV resistance genes and a drug resistance gene | | | | DI | ABETES & COMPLICATIONS | | | SP1-06513
Foyt, ViaCyte Inc. | Strategic Partnership I | IND, Ph
1/2 | Diabetes: Type 1 | Allogeneic hESC-derived pancreatic cell progenitors in a device implanted subcutaneously | | DR1-01423
Brandon, ViaCyte Inc | Disease Team I | IND | Diabetes: Type 1 | Allogeneic hESC-derived pancreatic cell progenitors in a device implanted subcutaneously | | TR2-01787 Isseroff, UC Davis | Early Translation II | DC | Chronic Diabetic foot ulcers | Allogenic hMSC on a dermal regeneration scaffold | | isseron, de paris | | | BLOOD DISORDERS | | | SP2-06902
Recommended for
Funding by GWG | Strategic Partnership
II | IND, Ph | β-thalassemia | Autologous HSC genetically modified ex vivo using a
novel gene-editing technology to re-activate fetal
gamma-globin expression | | SP1-06477
Davidson, Bluebird Bio | Strategic Partnership I | IND, Ph
1/2 | β-thalassemia | Autologous HSC genetically modified ex viv owith lentiviral vector encoding a therapeutic form of the β-globin gene | | DR2A-05365
Shizuru, Stanford | Disease Team Therapy
Development | IND, Ph
1/2 | Conditioning regimen for
allogeneic HSC transplantation
for X-SCID | MAb that depletes endogenous HSC | | DR1-01452
Kohn, UCLA | Disease Team I | IND | Sickle Cell Disease | Autologous HSC, genetically corrected ex vivo by lentiviral vector mediated addition of a hemoglobin gene that blocks sickling | | TR1-01273
Verma, Salk | Early Translation I | DC | Fanconi Anemia, XSCID | Autologous iPSC-derived HSC genetically corrected <i>ex</i> vivo by homologous recombination | | TR3-05535
Cowan, UCSF | Early Translation III | DC | SCID-A | Autologous HSC genetically corrected ex vivo by lentiviral vector mediated delivery of the Artemis gene | | | | | BONE DISORDERS | | | SP2-06906
Not Recommended for
Funding by GWG | Strategic Partnership II | IND, Ph
1/2 | Spinal fusion | Combination product of a ceramic scaffold and human
bone marrow stromal cells that are stimulated to form
bone | | DR2A-05302
Lane, UC Davis | Disease Team Therapy
Development | IND, Ph
1/2 | Osteoporosis | Synthetic molecule, LLP2A-Ale, to enhance homing of endogenous bone marrow MSCs to bone surface | | TR1-01249 | Early Translation I | DC | Bone fractures | Recombinant lyposomal Wnt3a to stimulate endogenous stem cells to repair bone | | Longaker, Stanford
TR2-01821
Peault, UCLA | Early Translation II | DC | Spinal fusion | Autologous adult perivascular stem cells (MSC) and an osteoinductive protein (CLL) on a FDA-approved acellular scaffold | | TR2-01780
Gazit, Cedars-Sinai | Early Translation II | DCF | Osteoporosis-related
vertebral compression
fractures | MSC in combination with PTH (parathyroid hormone) | | AWARD # PI, Institution | PROGRAM | GOAL* | DISEASE/INJURY | APPROACH | |------------------------------------|-------------------------------------|--------------|--|---| | · | | | CARTILAGE DISORDERS | | | TR1-01216
D'Lima, Scripps | Early Translation I | DC | Focal cartilage defect, osteoarthritis | iPSC- or ESC-derived chrondrocyte progenitors implanted into chrondral defect or injected into OA joint | | TR2-01829
Schultz, Scripps | Early Translation II | DC | Osteoarthritis | Optimized small molecule of lead molecule PRO1 that induces chrondrocyte differentiation of resident hMSC | | TR3-05709
Athanasiou, UC Davis | Early Translation III | DCF | Articular cartilage defects | Autologous adult (dermis isolated) stem cell-derived tissue engineered product | | | | CARDI | OVASCULAR, VASCULAR DISE | EASE | | DR2A-05735
Smith, Capricor Inc. | Disease Team Therapy
Development | Ph 2 | Heart dysfunction after MI/Chronic heart failure | Allogeneic cardiac-derived stem cells | | DR2A-05423
Laird, UC Davis | Disease Team Therapy
Development | IND, Ph
1 | Critical limb ischemia | Allogeneic MSC engineered to express VEGF delivered by intramuscular injection | | DR2A-05394
Wu, Stanford | Disease Team Therapy
Development | IND | End stage heart failure with LVAD | Allogeneic hESC-derived cardiomyocytes | | TR3-05556
Wu, Stanford | Early Translation III | DC | Cardiovascular Disease | hESC-derived cardiomyocytes seeded in a tissue engineered patch | | TR3-05593
Srivastava, Gladstone | Early Translation III | DC | Cardiovascular Disease | Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes by gene transfer | | TR3-05626
Boyd, UC Davis | Early Translation III | DC | Cardiovascular Disease | Allogeneic human bone marrow-derived MSCs
embedded in a biological scaffold | | TR3-05559
Xu, UCSD | Early Translation III | DCF | Cardiovascular Disease | hESC-derived cardiomyocytes genetically modified to evade allogeneic immune rejection | | TR3-05568
Belmonte, Salk | Early Translation III | DCF | Cardiovascular, Vascular
Disease | Multipotent vascular progenitors derived by direct conversion of somatic cells | | TR3-05687
Adler, UCSD | Early Translation III | DCF | Cardiovascular Disease -
Danon disease | Small molecule leads identified by correction of autophagy on Danon patient iPSC-derived lines | | | | | LIVER DISEASE | | | TR2-01857
Zern, UC Davis | Early Translation II | DC | Liver Disease (acute liver
failure and as a bridge
following large liver resections) | Allogeneic genetically modified hESC-derived hepatocytes | | TR3-05488
Miki, USC | Early Translation III | DCF | Liver Disease, Congenital | Human amniotic epithelial cell-derived hepatic cells | | TR3-05542
Willenbring, UCSF | Early Translation III | DCF | Liver Disease, Chronic | Human induced hepatocyte-like cells | | | | sk | ELETAL MUSCLE DISORDERS | | | TRX-05426
Nelson, UCLA | Early Translation | DCF | Duchenne muscular dystrophy | Combination therapy of an antisense oligonucleotide that promotes exon skipping and a small molecule that enhances its efficiency | | TR2-01756
Calos, Stanford | Early Translation II | DCF | Duchenne muscular dystrophy | Autologous skeletal muscle stem/precursor cells derived
from human iPSC genetically modifed to correct the
dystrophin gene | | TR3-05501
Blau, Stanford | Early Translation III | DCF | Age-related Muscle Atrophy | Autologous human muscle stem/progenitor cells rejuvenated and expanded ex vivo using a combined bioengineering and small molecule treatment | | | | | OTHER DISORDERS | | | DR1-01454
Lane, Stanford | Disease Team I | IND | Epidermolysis bullosa | Epidermal sheets from expanded autologous genetically corrected (to express wild type COL7A1) iPSC-derived keratinocytes | | TR3-05569
Reijo Pera, Stanford | Early Translation III | DC | Urinary Incontinence | Autologous iPSC-derived smooth muscle precursor cells and smooth muscle cells, potentially delivered in a matrix | * The Project Goal is: IND - file a complete IND with the FDA DC - achieve a development candidate ready for INDenabling preclinical development DCF - show feasibility of a potential development candidate by achieving initial proof of concept